Detecting collusion in government procurement: An approach using red flags and the Dempster-Shafer Theory
DOI:
https://doi.org/10.36428/revistadacgu.v12i21.174Abstract
In both public and private sectors, there is a growing number of fraudulent techniques and schemes perpetrated by individuals whose purpose is to misappropriate the assets of the target entities. Fraud detection is a complex activity as these individuals try to hide their actions so that they are not discovered. Given this, the objective of the present work is to present an approach that allows identifying and aggregating evidence related to red flag signals from the use of different data mining techniques, deriving a general measure of probative value that can be used to recognize bids in which collusion may have occurred between bidders. The results show that the proposal can help the investigation activities conducted by the inspection entities, as it helps to direct efforts to areas that concentrate a larger set of evidential elements.Downloads
References
ABDALLAH, A.; MAAROF, M. A.; ZAINAL, A. Fraud detection system: A survey.
Journal of Network and Computer Applications, v. 68, p. 90 – 113, 2016.
AKOMAH, B. B.; NANI, G. Public Procurement Corruption: Types, Approaches, and Collusion or Rigging. African Journal of Applied Research (AJAR), v. 2, n. 1, 2016. Disponível em: <http://www.ajaronline.com/index.php/AJAR/article/view/165>. Acesso em: 28 nov 2018.
ALBRECHT, W. S. et al. Fraud Examination. [S.l.]: Cengage Learning, 2012.
BAADER, G.; KRCMAR, H. Reducing false positives in fraud detection: Combining the red flag approach with process mining. International Journal of Accounting Information Systems, Elsevier, v. 31, p. 1 – 16, Junho 2018. ISSN 1467-0895. Disponível em: <https://doi.org/10.1016/j.accinf.2018.03.004>. Acesso em: 11/03/2019.
BARNETT, J. A. Computational methods for a mathematical theory of evidence. In: Classic Works of the Dempster-Shafer Theory of Belief Functions. Berlin: Springer, 2008. p. 197 – 216.
BATAGLIA, Murilo Borsio; FARRANHA, Ana Claudia. Governança e Administração Pública: o uso de tecnologias para a prevenção da corrupção e promoção da transparência. Revista da Controladoria-Geral da União, v. 11, n. 18, pp. 23, 2019.
BOZKAYA, M.; GABRIELS, J.; WERF, J. M. van der. Process Diagnostics: A Method Based on Process Mining. In: International Conference on Information, Process, and Knowledge Management. Cancun: IEEE, 2009. p. 22 – 27.
CUIABANO, S. M. et al. Filtrando cartéis: a contribuição da literatura econômica na identificação de comportamentos colusivos. Revista de Defesa da Concorrência, v. 2, n. 2, p. 43 – 63, 2014.
DOMINGOS, S. L. et al. Identifying IT purchases anomalies in the Brazilian Government Procurement System using Deep Learning. In: 15th IEEE International Conference on Machine Learning and Applications (ICMLA). Anaheim: [s.n.], 2016. p. 722 – 727. Disponível em: <https://ieeexplore.ieee.org/abstract/document/7838233>. Acesso em: 29/03/2019.
FERWERDA, J.; DELEANU, I.; UNGER, B. Corruption in public procurement: finding the right indicators. European Journal on Criminal Policy and Research, v. 23, n. 2, p. 245 – 267, 2017.
FUKUKAWA, H.; MOCK, T. J.; SRIVASTAVA, R. P. Assessing the Risk of Fraud at Olympus and Identifying an Effective Audit Plan. The Japanese Accounting Review, v. 4, n. 1, p. 1 – 25, 2014.
GAO, L.; MOCK, T. J.; SRIVASTAVA, R. P. An evidential reasoning approach to fraud risk assessment under Dempster-Shafer theory: A general framework. In: IEEE (Ed.). 44th Hawaii International Conference on System Sciences (HICSS). [S.l.: s.n.], 2011. p. 1 – 10.
GIRIŪNAS, L.; MACKEVIČIUS, J. Evaluation of frauds in public sector. Entrepreneurship and Sustainability Issues, v. 1, n. 3, p. 143 – 150, 2014.
GRACE, E. et al. Detecting Fraud, Corruption, and Collusion in International Development Contracts: The Design of a Proof-of-Concept Automated System. IEEE International Conference on Big Data, p. 1444 – 1453, Dezembro 2016.
GRONEWOLD, U. The Probative Value of Audit Evidence The State of the Art and Avenues towards a General Theory. In: 16th National Auditing Conference. Manchester: [s.n.], 2006. p. 1 – 31. Disponível em: <http://static.aston.ac.uk/asig/2006-NAC.htm>. Acesso em: 07/04/2018.
HEGAZY, M. A. E. A.; KASSEM, R. Fraudulent financial reporting: Do red flags really help? Journal of Economics and Engineering, v. 4, p. 69 – 79, 2010.
INTERNATIONAL ANTI-CORRUPTION RESOURCE CENTER. Guide to Combating Corruption & Fraud in Development Projects. 2019. Disponível em: <https://guide.iacrc.org/>. Acesso em: 08/03/2019.
MAGRO, C. B. D.; CUNHA, P. da. Red flags na detecção de fraudes em cooperativas de crédito: percepção dos auditores internos. Revista Brasileira de Gestão de Negócios, v. 19, n. 65, p. 469 – 491, 2017.
MINISTÉRIO PÚBLICO FEDERAL. O caso lava jato. 2019. Disponível em: <http://www.mpf.mp.br/grandes-casos/caso-lava-jato/entenda-o-caso>. Acesso em: 15/05/2019.
MOYES, G. D. The differences in perceived level of fraud-detecting effectiveness of SAS No. 99 red flags between external and internal auditors. Journal of Business & Economics Research, v. 5, n. 6, p. 9 – 25, 2007.
MOYES, G. D.; YOUNG, R.; MOHAMED, H. F. D. Malaysian internal and external auditor perceptions of the effectiveness of red flags for detecting fraud. International Journal of Auditing Technology, v. 1, n. 1, p. 91 – 106, 2013.
MURCIA, F. D.; BORBA, J. A. Estrutura para detecção do risco de fraude nas demonstrações contábeis: mapeando o ambiente fraudulento. BBR-Brazilian Business Review, v. 4, n. 3, p. 162 – 177, 2007.
MURCIA, F. D.; BORBA, J. A.; SCHIEHLL, E. Relevância dos Red flags na Avaliação do Risco de Fraudes nas Demonstrações Contábeis: A percepção de auditores independentes brasileiros. Revista Universo Contábil, v. 4, n. 1, p. 25 – 48, 2008.
PINHEIRO, G. J.; CUNHA, L. R. S. A importância da auditoria na detecção de fraudes.
Contabilidade Vista & Revista, v. 14, n. 1, p. 31 – 47, 2003.
PORTER, R. H.; ZONA, J. D. Detection of bid rigging in procurement auctions. Journal of political economy, v. 101, n. 3, p. 518 – 538, 1993.
REBOUÇAS, R. R. et al. Detecção de figurantes em pregões eletrônicos do governo federal brasileiro. Informação & Tecnologia, v. 2, n. 2, p. 5 – 21, jul./dec. 2015. ISSN 2358-3908.
REINA, D.; NASCIMENTO, S. do; REINA, D. R. M. A percepção dos auditores quanto à utilização dos red flags nas principais empresas de auditoria brasileiras. Enfoque: Reflexão Contábil, v. 27, n. 2, 2008.
SALES, L. J.; CARVALHO, R. S. Análise multivariada de dados aplicada na previsão irregularidades em contratos do governo brasileiro. In: XIX Congreso Internacional del CLAD sobre la Reforma del Estado y de la Administración Pública. QUITO: [s.n.], 2014.
SRIVASTAVA, R. P. Belief Functions and Audit Decisions. Auditor’s Report, v. 17, n. 1, p. 8 – 12, 1993.
SRIVASTAVA, R. P. The belief-function approach to aggregating audit evidence.
International Journal of Intelligent Systems, v. 10, n. 3, p. 329 – 356, 1995.
SUN, L.; SRIVASTAVA, R. P.; MOCK, T. J. An Information Systems Security Risk Assessment Model Under the Dempster-Shafer Theory of Belief Functions. Journal of Management Information Systems, v. 22, n. 4, p. 109 – 142, 2006.
TAS, B. K. O. Collusion Detection in Public Procurement with Limited Information.
Economic Research Forum Working Papers, n. 1127, p. 1 – 24, 2017.
TÓTH, B. et al. Toolkit for detecting collusive bidding in public procurement. With examples from Hungary. Budapest, 2014.
Downloads
Additional Files
Published
Issue
Section
License
The Revista da CGU follows the Creative Commons Attribution 4.0 International License (CC BY), which allows the use and sharing of published works with mandatory indication of authors and sources. Contents published until 2019 have generic permission for use and sharing with mandatory indication of authorship and source.
We highlight some essential and non-exhaustive points related:
- The submission of the proposal implies a commitment not to submit it to another journal and authorizes if approved, its publication.
- The submission of the proposal also implies that the author(s) agrees with the publication, without resulting in remuneration, reimbursement, or compensation of any kind.
- The published texts are the responsibility of the authors and do not necessarily represent the opinion of the journal.
- Responsibility for any plagiarism is the responsibility of the author(s).
- The person responsible for the submission declares, under the penalties of the Law, that the information on the authorship of the work is complete and correct.
Also highlighted are the items related to our Editorial Policies, in particular on the Focus and Scope, Publication Ethics, Peer Review Process, and Open Access Policy.
