Como somos vistos? Análise da imagem organizacional pública utilizando ciência de dados
DOI:
https://doi.org/10.36428/revistadacgu.v14i26.559Keywords:
Imagem Organizacional Pública, Notícias, Ciência de Dados, NLPAbstract
Organizational image is understood as the public perceptions around an organization. For public organizations, it’s important to manage such an image, as it directly interferes with its relationship with different actors, as well as its legitimacy and credibility in society. In this sense, press vehicles have a great influence on the organizational image, but there are challenges when analyzing the organizational image through these sources. Therefore, the objective of this article is to use Data Science techniques to analyze the organizational image of a public organization through the national press, focusing on news portals and newspapers. For validation, the case of the Agência Nacional de Energia Elétrica (ANEEL) was used. The methodological steps consisted of defining, collecting, preparing and analyzing data, and Natural Language Processing techniques were used. The main results reinforce the evidence of a strong relationship between the image of ANEEL and the image of the Government, and that there is a disparity between the image conveyed by the headline and the news in full. Also, the use of communication strategies (labeling, agenda-setting, linkage and framing) by the press vehicles was observed. For future studies, it’s suggested the use of other data sources and also the validation from other cases.
Downloads
References
Aggarwal, C. C. & Zhai, C. X. (2012). A survey of text classification algorithms. In Mining Text Data (pp. 163-222). Springer. https://doi.org/10.1007/978-1-4614-3223-4_6.
Altszyler, E., Ribeiro, S., Sigman, M., & Slezak, D. F. (2017). The interpretation of dream meaning: Resolving ambiguity using Latent Semantic Analysis in a small corpus of text. Consciousness and Cognition: An International Journal, 56, 178–187. https://doi.org/10.1016/j.concog.2017.09.004.
Agência Nacional de Energia Elétrica (2021). A ANEEL. https://www.aneel.gov.br/a-aneel.
Barich, H. & Kotler, P. (1991). A framework for marketing image management. Sloan Management Review, 32 (2), 94–104.
Bartoluzzio, A. I. S. S., Dos Anjos, L. C. M., Dos Santos, M. R. L. & Freire, R. S. (2019). Percepção dos Cidadãos sobre os Portais da Transparência do Governo Estadual e das Gestões Municipais em Pernambuco. Revista da CGU, 11 (18), 1115-1133. https://doi.org/10.36428/revistadacgu.v11i18.149.
Blei, D. M. (2012). Probabilistic topic models. Communications of the ACM, 55(4), 77-84. https://doi.org/10.1145/2133806.2133826.
Bromley, D. B. (1993). Reputation, image and impression management. John Wiley & Sons.
Cezar, L. C. (2019). Comunicação e marketing no setor público: diferentes abordagens para a realidade brasileira. Enap.
Chuprina, S., Postanogov, I., & Kostareva, T. (2017). A way how to impart data science skills to computer science students exemplified by obda-systems development. Procedia Computer Science, 108, 2161- 2170.
Cielen, D. & Meysman, A. (2016). Introducing data science: big data, machine learning, and more, using Python tools. Simon and Schuster.
Crain, S. P., Zhou, K., Yang, S. H. & Zha, H. (2012). Dimensionality reduction and topic modeling: From latent semantic indexing to latent dirichlet allocation and beyond. In Mining Text Data (pp. 129-161). Springer. https://doi.org/10.1007/978-1-4614-3223-4_5.
Da Silva, M. S. P. & Gutierez, R. H. (2013). Avaliação da visão interna da imagem de autarquias federais: Estudo de caso da Comissão Nacional de Energia Nuclear. Sustainable Business International Journal, 30, 01-25.
Da Fonseca, L. C. L. (2020). Uma análise da reputação das empresas do PIM na mídia. Revista Eletrônica – Arte, Educação, Comunicação e Design, 1 (3), 1-30.
De Sousa, C. M., Ardigo, J. P. & Santos, A. R. (2021). A produção acadêmica nacional e internacional sobre imagem corporativa no setor público. Gestão e Sociedade, 15 (43), 4466-4496.
Dowling, G. R. (1986). Managing your corporate image. Industrial Marketing Management, 15(2), 109–115.
Eickhoff, M. & Neuss, N. (2017, june 5-10). Topic modelling methodology: its use in information systems and other managerial disciplines. Proceedings of the 25th European Conference on Information Systems (ECIS), Guimarães, Portugal.
Fan, W. & Gordon, M. D. (2014). The Power of Social Media Analytics. Communications of the ACM, 57 (6), 74-81.
Hines, A., Bengston, D. N., Dockry, M. J. & Cowart, A. (2018). Setting Up a Horizon Scanning System: A U.S. Federal Agency Example. World Futures Review, 10(2), 136-151.
Hjarvard, S. (2012). Midiatização: teorizando a mídia como agente de mudança social e cultural. Matrizes, 5 (2), p. 53-91.
Ind, N. (1997). The Corporate Brand. Macmillan Press Ltd.
Landauer, T. K. (2007). LSA as a theory of meaning. In T. K. Landauer, D. S. McNamara, S. Dennis, & W. Kintsch (Eds.), Handbook of latent semantic analysis (pp. 3–34). Lawrence Erlbaum Associates Publishers.
Langley, A. & Klag, M. (2019). Being where? Navigating the involvement paradox in qualitative research accounts. Organizational Research Methods, 22(2), 515-538. https://doi.org/10.1177/1094428117741967.
Maia, R. C. M. (2009). Mídia e diferentes dimensões da Accountability. Revista da Associação Nacional dos Programas de Pós-Graduação em Comunicação, 2.
Manning, C. D., Raghavan, P. & Schütze H. (2010). Introduction to information retrieval. Cambridge University Press.
Marcolin, C. B., Becker, J. L., Wild, F., Behr, A. & Schiavi, G. (2021). Listening to the voice of the guest: A framework to improve decision-making processes with text data. International Journal of Hospitality Management, 94, 1-12. https://doi.org/10.1016/j.ijhm.2020.102853.
Martineau, P. (1958). The personality of the retail store. Harvard Business School Press.
Martins, S. A. (2014). Mídia e Opinião Pública: Estudo de Caso sobre o Mensalão nas Ópticas dos jornais Folha de São Paulo e o Estado de São Paulo. Universitas: Arquitetura e Comunicação Social, 11 (2), p. 47-58. https://doi.org/10.5102/uc.v11i2.2891.
Maulud, H. D., Zeebaree, S. R. M., Jacksi, K., Sadeeq, M. A. M. & Sharif, K. H. (2021). State of Art for Semantic Analysis of Natural Language Processing. Qubahan Academic Journal, 1(2), 21–28. https://doi.org/10.48161/qaj.v1n2a44
Nikolenko, S. I., Koltcov, S., & Koltsova, O. (2017). Topic modelling for qualitative studies. Journal of Information Science, 43(1), 88-102. https://doi.org/10.1177/0165551515617393.
Otto, L. P., Thomas, G., Glogger, I. & De Vreese, C. H. (2022). Linking Media Content and Survey Data in a Dynamic and Digital Media Environment – Mobile Longitudinal Linkage Analysis. Digital Journalism, 10 (1), 200-215. https://doi.org/10.1080/21670811.2021.1890169
Penteado, C. C., Fortunato, I. (2015). Mídia e Políticas Públicas: Possíveis Campos Exploratórios. Revista Brasileira de Ciências Sociais, 30 (87), 129-142. https://doi.org/10.17666/3087129-141/2015.
Schmiedel, T., Müller, O. & Brocke, J. (2019). Topic modeling as a strategy of inquiry in organizational research: A tutorial with an application example on organizational culture. Organizational Research Methods, 22(4), 941-968. https://doi.org/10.1177/1094428118773858.
Schuler, M. (2004). Management of the organizational image: a method for organizational image configuration. Corporate Reputation Review, 7 (1), 37-53.
Steppacher, D. (2012). Pesquisa de imagem organizacional de um órgão público federal: a Escola de Administração da Universidade Federal do Rio Grande do Sul sob a ótica de seus alunos de graduação. 2012. [Especialização em Marketing, Universidade Federal do Rio Grande do Sul - UFRGS].
Stieglitz, S., Mirbabaie, M., Ross, B. & Neuberger, C. (2018). Social media analytics: Challenges in topic discovery, data collection, and data preparation. International Journal of Information Management, 39, 156–168.
Tabesh, P., Mousavidin, E. & Hasani, S. (2019). Implementing big data strategies: A managerial perspective. Business Horizons, 62(3), 347-358.
Valerio, D. M. & Pizzinatto, N. K. (2003). Análise da Imagem Organizacional de Universidades por Meio da Matriz Familiaridade-Favorabilidade. Revista de Administração Mackenzie, 4 (1), 26-37.
Zhang, J., Wu, B., Morrison, A. M., Tseng, C. & Chen, Y. C. (2016). How country image affects tourists’ destination evaluations. Journal of Hospitality & Tourism Research, 42(6), 904–930.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Revista da CGU

This work is licensed under a Creative Commons Attribution 4.0 International License.
The Revista da CGU follows the Creative Commons Attribution 4.0 International License (CC BY), which allows the use and sharing of published works with mandatory indication of authors and sources. Contents published until 2019 have generic permission for use and sharing with mandatory indication of authorship and source.
We highlight some essential and non-exhaustive points related:
- The submission of the proposal implies a commitment not to submit it to another journal and authorizes if approved, its publication.
- The submission of the proposal also implies that the author(s) agrees with the publication, without resulting in remuneration, reimbursement, or compensation of any kind.
- The published texts are the responsibility of the authors and do not necessarily represent the opinion of the journal.
- Responsibility for any plagiarism is the responsibility of the author(s).
- The person responsible for the submission declares, under the penalties of the Law, that the information on the authorship of the work is complete and correct.
Also highlighted are the items related to our Editorial Policies, in particular on the Focus and Scope, Publication Ethics, Peer Review Process, and Open Access Policy.
